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Abstract. The occurrence of a quadrupolar ordering within theγ orthorhombic symmetry at
7 K in TmAu2 (MoSi2-type tetragonal structure) was recently discovered with properties closely
reminiscent of the ones observed in isomorphous TmAg2. Both the magnetoelastic couplings
and the quadrupolar pair interactions are here determined by means of third-order magnetic
susceptibility and parastriction measurements. The existence of an antiferromagnetic ordering
around 3 K in thequadrupolar phase leads to complex magnetic phase diagrams in the (H, T )
plane, which have been established along the main crystallographic directions of the tetragonal cell
and appear to result from the balance between magnetic and quadrupolar interactions.

1. Introduction

The studies of magnetoelastic properties soared in popularity in the seventies for insulating
compounds. Rare-earth (R) orthophosphates and orthovanadates are now considered as
archetypes of the cooperative Jahn–Teller effect. Several of them exhibit a spontaneous
tetragonal–orthorhombic transition (Gehring and Gehring 1975). Large magnetoelastic
couplings are also present in R intermetallics and compete with the magnetic interactions
(Morin and Schmitt 1990); structural transitions are observed in the paramagnetic range of, for
instance, TmZn and TmAg2 (Morin and Rouchy 1993). This coexistence has made necessary
the development of microscopic models considering both types of interaction, quadrupolar and
magnetic, in the presence of the crystalline electric field (CEF). They demonstrate the relevance
of the mean-field approximation to the description of quadrupolar orderings as well as to the
analysis of the balance between quadrupolar and spin couplings. Concerning quadrupolar
couplings, the main feature is that in insulators, the magnetoelastic coupling clearly dominates
the pair interactions mediated by phonons and induces the Jahn–Teller transition, whereas in
intermetallics, the quadrupolar ordering is driven by the pair interactions, its best evidence
being the spontaneous symmetry lowering associated with the magnetoelastic coupling.

In rare-earth intermetallics, the existence of quadrupolar interactions has been studied
mainly for cubic symmetry with record values for the spontaneous magnetostriction (1.7% for
the tetragonal symmetry lowering mode in CeZn (Schmittet al 1978)) and with quadrupolar
orderings observed in the paramagnetic state as for instance in cubic TmCd and TmZn. In
these standard systems, a close coherency has been found between different determinations of
the quadrupolar couplings. This has been facilitated by an exact knowledge of the CEF (Morin
and Schmitt 1990). Rarer are similar analyses for lower symmetries such as tetragonal or
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hexagonal owing to the large number of CEF, magnetoelastic and pair interactions coefficients
to be determined. The compound TmAg2 (MoSi2-type structure) was the first tetragonal
rare-earth intermetallic extensively studied from a quadrupolar point of view; it undergoes
at TQ = 5 K a second-order transition to aγ orthorhombic state; no magnetic ordering
occurs. The study of its magnetic and magnetoelastic properties was based on an extended
susceptibility formalism and leads to a fully coherent understanding of the quadrupolar state.
Recently, a similar quadrupolar ordering within theγ orthorhombic symmetry was observed
at 7 K in theisomorphous compound TmAu2, with very reminiscent properties (Kosakaet al
1998). However, in this last system, an antiferromagnetic ordering occurs around 3 K, i.e. in
the orthorhombic phase. These two tetragonal compounds constitute a set reminiscent of cubic
TmZn and TmCd. In TmCd and TmAg2, the magnetic bilinear interactions are not large enough
to induce a magnetic moment on the singlet ground state and the magnetic system remains
undercritical in the ferroquadrupolar phase. In contrast, TmZn and TmAu2 order ferro- and
antiferromagnetically, respectively. However in TmAu2, owing to the usual behaviour of an
antiferromagnetic system under an applied magnetic field, complex magnetic properties may
be expected in particular when studying the (H, T ) magnetic phase diagrams.

We present here an extensive study of the magnetic and quadrupolar properties of TmAu2.
We first briefly recall the relevant Hamiltonian (section 2) in order to analyse the magnetic
and/or quadrupolar response to an applied magnetic field, i.e. the first-order, third-order
magnetic susceptibilities, the parastriction associated with different symmetry lowering modes
of the tetragonal cell as well as the magnetization processes along the〈100〉 axes and any
direction of the basal plane (section 3). In section 4, low temperature magnetization processes
are studied in order to build the magnetic phase diagrams along the principal crystallographic
directions.

2. Formalism

The (q = 0) magnetic properties of the 4f shell are described for a tetragonal symmetry with
the following Hamiltonian (Morinet al 1988):

H = HCEF +HZ +HB +HQ +HME + (Eel +EB +EQ). (1)

The CEF term,HCEF , is written using the Stevens operator-equivalent method (Stevens
1952) within a system ofx, y, z axes parallel to the [100], [010] and [001] axes of the body-
centred lattice cell, respectively:

HCEF = αJV 0
2O

0
2 + βJ (V

0
4O

0
4 + V 4

4O
4
4) + γJ (V

0
6O

0
6 + V 4

6O
4
6). (2)

Om
l are the Stevens operators,αJ ,βJ , γJ the Stevens coefficients,V ml the CEF parameters;

we will use in this paper the parameters proposed by Kosakaet al (1998). The 4f magnetic
moment is coupled through the Zeeman term to the applied magnetic field,H, corrected for
demagnetizing effects:

HZ = −gJµBH · J . (3)

The bilinear interactions of Heisenberg type are taken into account within the mean field
approximation (MFA):

HB = −(gJµB)2 θ
C
〈J〉 · J (4)

with C the Curie constant andθ∗ the exchange interaction temperature. Within the MFA, the
two-ion quadrupolar term reads as

HQ = −Kα〈O0
2〉O0

2 −Kγ 〈O2
2〉O2

2 −Kδ〈Pxy〉Pxy −Kε[〈Pyz〉Pyz + 〈Pzx〉Pzx ] (5)
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with

O0
2 = 3J 2

z − J (J + 1)

O2
2 = J 2

x − J 2
y

Pij = 1
2(JiJj + JjJi) (ij = xy, yz, zx).

Only magnetoelastic contributions linear in strain and restricted to second-rank terms are
considered here; in symmetrized notation:

HME = −(Bα1εα1 +Bα2εα2)O0
2 − Bγ εγO2

2 − BδεδPxy − Bε(εε1Pzx + εε2Pyz). (6)

Among the strainsεµ, εαI and εεi are usually weak in R systems, in particular for
intermetallics (see for instance Morinet al1994) andεγ = (1/√2)(εxx−εyy)andεδ = √2εxy .
TheBµ are the magnetoelastic coefficients. The related elastic energy is written as

Eel = 1
2C

α1
0 (ε

α1)2 +Cα12
0 εα1εα2 + 1

2C
α2
0 (ε

α2)2 + 1
2C

γ

0 (ε
γ )2

+1
2C

δ
0(ε

δ)2 + 1
2C

ε
0[(εε1)

2 + (εε2)
2]. (7)

TheCµ0 are the symmetrized background elastic constants in the absence of magnetic
interactions (for instanceCγ0 = (C11− C12)0 andCδ0 = 2(C66)0)). EB andEQ are corrective
energies, which result from the MFA treatment. Minimizing the free energy with regard to the
strains gives the equilibrium strains as functions of the expectation value of the corresponding
quadrupolar operators. Replacing theseεµ makesHME (equation (6)) indistinguishable from
HQ (equation 5):

HQ +HME = −Gα〈O0
2〉O0

2 −Gγ 〈O2
2〉O2

2 −Gδ〈Pxy〉Pxy −Gε[〈Pzx〉Pzx + 〈Pyz〉Pyz] (8)

with, for the symmetry-lowering modes,Gµ = Gµ

ME +Kµ = (Bµ)2/Cµ0 +Kµ(µ = γ, δ, ε).
In the (q = 0) ordered phases or in the presence of large external stresses the Hamiltonian

has to be self-consistently diagonalized with regard to the three magnetic components and
to the five quadrupolar ones. In the presence of small external stresses, perturbation theory
can be applied very fruitfully to the disordered phase. It is then possible to obtain analytical
expressions for the free energy associated with each of the five symmetry lowering modes
and then to describe the corresponding couplings. For example the third-order magnetic
susceptibility, i.e. theH 3 term in the field expansion of the magnetization, reads as:

χ
(3)
M =

1

(1− (θ∗/C)χ0)4

[
χ
(3)
0 +

2Gα(χ(2)α )2

1−Gαχα
+

2Gµ(χ(2)µ )2

1−Gµχµ

]
. (9)

Only theα-mode is present forH parallel to the [001] axis.χ0 is the anisotropic magnetic
susceptibility. For each symmetry, three single-ion susceptibilities are introduced, which are
known as soon as the CEF is determined:χ

(3)
0 describes theH 3 term of the magnetic response

in the absence of any interaction. The strain susceptibility,χµ = ∂〈Oµ

2 〉/∂εµ, is responsible
for the softening of the associated elastic constant,

Cµ = Cµ0 −
(Bµ)2χµ

(1−Kµχµ)
. (10)

χ(2)µ = ∂〈Oµ

2 〉/∂H 2 is the quadrupolar response to a magnetic field and determines the
parastriction process:

εµ = Bµ

C
µ

0

χ(2)µ

(1−Gµχµ)(1− (θ∗/C)χ0)2
H 2. (11)

Each of theεµ can be determined from the combinations ofλβ1β2β3
α1α2α3

, relative changes of
length induced by a(β1β2β3)magnetic field and measured in appropriate(α1α2α3) directions.



1308 P Morin et al

After the determination of the CEF and of the single ion susceptibilities, the fit of the magnetic
susceptibility along the [001] axis and in the basal plane provides us withθ∗. The other
experiments give the different pairs ofBµ andKµ coefficients.

3. Determination of the magnetoelastic couplings

All the measurements presented here have been performed on single crystals cut in an ingot
grown by the Czochralski method. They were then annealed at 1000◦C for a week. All the
analyses have been realized using the CEF parameters proposed by Kosakaet al.

3.1. Magnetic susceptibilities

The isothermal magnetization curves were collected along the [001], [100] and [110]
directions. The first- and third-order susceptibility values were then deduced from the zero-
field extrapolation and the initial slope of Arrott plots, respectively. Within the experimental
accuracy, the first-order magnetic susceptibility is isotropic in the basal plane as expected
for the tetragonal symmetry. The CEF anisotropy is observed in favour of the basal plane
(figure 1); it is clearly larger than in TmAg2, in particular at high temperature, which agrees
with aV 2

0 parameter larger in TmAu2 than in TmAg2. The fit of the data indicates very weak
bilinear interactions characterized byθ∗ = 0± 0.5 K.

Figure 1. The temperature dependence of the reciprocal first-order susceptibility along the [001]
axis and in the basal plane (dots: [100]; open squares: [110]). Full lines are calculated within the
tetragonal symmetry for zero magnetic bilinear exchange.TQ is theγ -quadrupolar transition.

Note that the fit at low temperature along the tetragonal axis is not as perfect as in TmAg2;
this could not arise from a misorientation of the field along this axis of difficult magnetization:
indeed the measured susceptibility is lower than the calculated one; this seems to indicate a
not perfectly optimized set of CEF parameters. The first-order susceptibility along the [001]
axis is sensitive to the occurrence of the quadrupolar ordering atTQ through the reconstruction
of the level-scheme and the change in the composition of the wave functions. Along [100],
the modification of the susceptibility is due to the same reason with additional effects arising
from the partition of the sample into orthorhombic domains (inset of figure 1); fortuitously, the
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[110] first-order susceptibility is not significantly sensitive to the quadrupolar ordering. The
occurrence of the antiferromagnetic ordering is clearly observed along the three directions.

Theχ(3)M temperature dependences along the [110] and [001] axes are drawn in figure 2.
Along the [001] hard magnetization axis, the third-order magnetic susceptibility is weakly
negative; the maximum absolute value is about 1.5 × 10−6 µB kOe−3 immediately above
TQ. The temperature variation is correctly described withθ∗ = 0 K with the raising of a
small discrepancy immediately aboveTQ. In the orthorhombic phase, it becomes weakly
positive. Along the [110] direction, the data are negative; the calculated third-order magnetic
susceptibility does not exhibit a significant dependence onGδ, forGδ ranging between−100,
100 mK, i.e. absolute values larger than usually observed in rare earth intermetallics. The
δ-symmetry is clearly unfavoured by the CEF, the corresponding susceptibilities being weak.
In contrast, this third-order magnetic susceptibility quite sizeably depends on theθ∗ value and
the best fit is obtained with a zero value, as previously observed for the first-order magnetic
susceptibility. In this direction also, a small upwards shift is observed for data immediately
aboveTQ.

Figure 2. Temperature variation of the third-order magnetic susceptibility along the [110] (dots)
and [001] (squares) axes of the body-centred tetragonal cell of TmAu2. Curves are calculated with
zero bilinear and quadrupolar contributions.

Along the [100] axis (figure 3), theχ(3)M data are positive in the thermal range investigated,
in contrast to the values calculated without quadrupolar interactions. Quadrupolar interactions
characterized byGγ = 20 mK drive the calculated variation to be positive and close to the
experimental one. In the vicinity ofTQ, aGγ value slightly smaller, around 18 mK, would
allow one a better fit.

3.2. Parastriction

In order to study the main symmetry lowering modes of the tetragonal cell, magnetostriction
data have been collected in a magnetic field applied in the basal plane successively parallel
to the [100] and [110] crystallographic directions; strain gauges were glued along the [100],
[010] and [110] and [−110] directions, respectively. The isothermal changes of length (λ‖, λ⊥)
are then measured parallel and perpendicular to the magnetic field up to 14 T. Within these
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Figure 3. Temperature variation of the third-order magnetic susceptibility along the [100] axis of
the body-centred tetragonal cell of TmAu2. Curves are calculated withθ∗ = 0 K andγ quadrupolar
contributions either null (dashed line) or defined byGδ = 20 mK (full line).

experimental conditions,

λ‖ = εα1

√
3
− 1√

6
εα2 +

1√
2
εµ andλ⊥ = εα1

√
3
− 1√

6
with µ = γor δ.

At every temperature the quadratic field dependence of the measured change of length has
been checked. The fact thatλ‖ andλ⊥ are opposite forµ = γ or δ within the experimental
accuracy confirms thatεα contribution is small in comparison toεµ. Then the temperature
dependence of the initial slope of the differenceλ‖ = −λ⊥ =

√
2εµ(H) is compared to the

predictions from the susceptibility formalism in a linearized form deduced from equation (11).
For the [100] field direction, the differenceλ‖ −λ⊥ =

√
2εγ is negative, thus so isBγ . In

figure 4(a), the high temperature slope,
√
C
γ

0 /|Bγ | = 59± 1 MOe, gives without ambiguity
the magnetoelastic coefficient value,Bγ = −51.5±1.5 K, when using the background elastic
constantCγ0 = 18× 104 K defined in Kosakaet al (1998) for the fit of theCγ = C11− C12

elastic mode.
At low temperature, the same type of discrepancy observed for the third-order magnetic

susceptibility in the tetragonal phase is present with an upwards curvature appearing below
around 20 K. This phenomenon limits the accuracy of the determination ofGγ , as shown in
the inset of figure 4(a); a value ofGγ of 20± 2 mK gives however the best agreement above
30 K. This effect also prevents us from observing the ‘destraining’ effects associated with the
partition of the sample into orthorhombic domains belowTQ as done in TmAg2.

This upwards curvature indicatesεγ to be too small: it is thus not driven by short range
order of quadrupolar origin, which would increase the strain. It is more likely due to short
range antiferromagnetic order, which reduces the effect of the applied field on the strain. This
also agrees with the measuredχ(3)M absolute values, smaller than the calculated ones at the low
temperature of the disordered range, whereas along the [100] directionγ quadrupolar short
range order would reinforce the positiveχ(3)M value. As a general consequence, close toTQ the
Gγ parameter has to slightly move down to a lower value (Gγ = 18 mK) in order to describe
the quadrupolar properties in the present MFA model.
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Figure 4. (a) Temperature variation of the parastriction within theγ -symmetry. Curves are
calculated withθ∗ = 0 K andγ quadrupolar interactions, characterized by theGγ values indicated.
(b) Temperature variation of theCγ = C11 − C12 elastic mode; data are reported from Kosaka
et al (1998) and the theoretical variation (full line) is calculated with the quadrupolar parameters
deduced from (a) (see text).

The magnetoelastic coefficient here deduced from the slope ofH/
√
εγ is larger than in

isomorphous TmAg2; this is related to the large background elastic constant determined in
Kosakaet al (1998) (Cγ0 = 18 instead of 13.5× 104 K). The magnetoelastic contribution to
Gγ = 20± 2 mK,Gγ

ME = (Bγ )2/C
γ

0 = 14.5± 0.9 mK, leads then to a quadrupolar pair
coefficientKγ = 6±2 mK. These values are significantly different from the values determined
in Kosakaet al (1998)(|Bγ | = 33.4 K andKγ = 10.6 mK,Gγ

ME = (Bγ )2/Cγ0 = 6.2 mK
andGγ = 16.2 mK) from the only study of theCγ ultrasonic mode, the analysis of which is
also based on a two-parameter fit. Figure 4(b) shows that the present values ofBγ andKγ lead
to a good fit ofCγ using the same elastic background as in Kosakaet al (1998). In conclusion
of this study of theγ symmetry-lowering mode, the set ofBγ , Kγ andGγ leads to coherent
descriptions of theTQ value, the third-order magnetic susceptibility, the parastriction and the
Cγ ultrasonic mode (table 1).

At low temperature, the spontaneous orthorhombic strain may be calculated:εγ =
Bγ /C

γ

0 〈O2
2〉 ≈ −5 × 10−3, instead of−4 × 10−3 in TmAg2. The main consequence of

the relatively large hardness of theCγ0 elastic constant observed in Kosakaet al (1998), then
of the largeBγ magnetoelastic coefficient here deduced is that the ratio of the pair interaction
coefficient and the magnetoelastic contribution,Kγ /G

γ

ME ≈ 0.4, is the smallest observed in
rare-earth intermetallics exhibiting a quadrupolar transition. For instance TmAg2, TmZn and
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Table 1. Quadrupolar parameters within theγ -orthorhombic symmetry in TmAu2.

Bµ (K) Kµ (mK) Gδ (mK)

χ
(3)
M (18–20)

Parastriction −51.5± 1.5 20± 2
Cγ = C11− C12 −51.5± 1.5 5 20
TQ 22

TmCd are driven to order by the pair interactions (Kγ /G
γ

ME ≈ 1.4, 4 and 9, respectively), with
the more or less efficient help of the magnetoelastic coupling. This latter essentially provides
one with the best evidence of the ordering, i.e. the spontaneous symmetry-lowering strain.
In contrast, TmAu2 is the first studied intermetallic mainly ordered by the magnetoelastic
coupling in a Jahn–Teller process. The large strength of theγ magnetoelastic coupling,
observed in TmAu2, has to be confirmed by systematic determinations in the isomorphous
RAu2 compounds.

For theδ-symmetry also,λ‖ andλ⊥ are opposite, but about 20 times smaller than for the
γ -symmetry in the same experimental conditions. These small values confirm the weakness of
theδ-symmetry-lowering mode, as already proved by the third-order magnetic susceptibility
and the absence of any significant softening in theC66 temperature variation in figure 4 of
Kosakaet al (1998).λ‖ −λ⊥ data are positive as is the strain field susceptibility,χ

(2)
δ , thusBδ

is positive. If using as elastic background theCδ0 = 2C0
66 ≈ 130× 104 K value deduced from

Kosakaet al (1998) (a value twice that in the RAg2 series), the slope of the high temperature

variation of
√
Cδ0/|Bδ| would lead toBδ ≈ +120 K, then toGδ

ME = (Bδ)2/Cδ0 = 12 mK,
a value which has no effect on the quadrupolar properties owing to the weakness of the
δ quadrupolar susceptibilities. Theα quadrupolar mode has been not studied specifically;
however for the two modes studied,λ‖ + λ⊥ = 2(εα1/

√
3− (1/√6)εα2) is very weak, less

than 10−2 of the λ[100]
‖ − λ[100]

⊥ value; theα mode is then quite negligible as observed in
TmAg2 and, more generally, in rare earth intermetallics. In conclusion of this section, theγ

symmetry-lowering mode is here confirmed to overwhelm theα, δ-symmetry ones.
The quadrupolar parameters here determined, as well as the nullθ∗ bilinear exchange

coefficient, will be kept constant in the following.

3.3. Magnetization in the basal plane

The same quality of the fits is also preserved in the following experiment. The magnetization
vector was measured as a function of the orientation of the magnetic field in the basal plane. The
sample can rotate round its [001] axis perpendicular to the field. Three pairs of compensated
coils measure simultaneously the flux variations parallel and perpendicular to the field during
the displacement of the sample parallel to the field. The maximum field is 7.5 T, the accuracy
on the magnetic components is about 0.04µB , the positioning angles are determined within
±0.15 degrees and the temperature is regulated within±0.01 K.

The upper parts of figure 5 show the two components,M‖H andM⊥H , of the paramagnetic
moment during the rotation of a constant field in the basal plane, for two temperatures above
and belowTQ. Theπ/2 periodicity is perfectly respected by the two components.M‖H is
maximum (minimum) for a field along the〈100〉 (〈110〉) axes. As in a torque experiment,M⊥H
vanishes as soon as the field points in a high symmetry direction. Its variation is periodic in the
experimental conditions, with extrema shifted towards the〈110〉 axes. The same analysis is
valid for theM‖ variation; it exhibits an angular point along the〈110〉 axes, more pronounced in
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Figure 5. Upper part: components parallel and perpendicular to the field of the paramagnetic
moment as functions of the direction of the 2 T field in the basal plane at 8 and 5 K. Lower part:
the angle between the field and the paramagnetic moment according to the field direction. Lines
are calculated withθ∗ = 0 K,Gδ = 0 mK andGγ = 18 mK (solid lines) orGγ = 20 mK (dashed
lines).

the quadrupolar phase. The8H variations of the two components are described by calculations
with Gδ ∈ (18, 20 mK). Note that the effect of theγ symmetry coefficient,Gγ , vanishes for
8H = 45◦, i.e.H ‖ 〈110〉 in agreement with symmetry considerations. The calculations are
presented here forGδ = 0 mK, but do not significantly depend onGδ values ranging from
−100 to +100 mK. BelowTQ, the partition of the sample in orthorhombic domains is not
considered in the calculations. This partition into domains contributes to round off the angular
dependence close to the〈110〉 direction as observed at 5 K. However it can be noted that the
experimental variation may be also described using aGγ coefficient around 16 mK.

From the values ofM‖H andM⊥H , it is possible to calculate the angle,φH −φM , between
the field and the paramagnetic moment. The variations in the lower parts of figure 5 show
that the anisotropies of both the magnetization and the energy are strongly determined by the
γ quadrupolar interactions. As soon asH is no longer parallel to the initial [100] axis, the
moment moves away from this direction and lies between the field and the closest〈100〉 axis.

For a magnetic field applied along the [100] direction of the tetragonal phase, the
magnetization and its field derivative are closely described at high temperatures as shown
in figure 6. Here also, decreasingGγ parameter values are required when lowering
the temperature down toTQ, which could be a way for our model to compensate the
antiferromagnetic short range effect close toTN .

4. Magnetic phase diagrams

We have then determined the magnetic phase diagrams in the (H, T ) plane. Magnetization
measurements have been collected down to 1.5 K in the same cryomagnets as previously;
additional data have been obtained at lower temperatures using a dilution refrigerator.
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Figure 6. Experimental and calculated field derivative of the magnetization curves along the [100]
direction of the tetragonal cell. Lines are calculated withθ∗ = 0 K andGγ = 18 mK (hatched
lines) orGγ = 20 mK (solid lines).

Isothermal and isofield measurements have been carried out for the three main directions
of the tetragonal symmetry. Isothermal magnetization curves are particularly well suited for
locating the transition lines nearly parallel to the horizontalT -axis, while isofield curves are
efficient in the case of transition lines more parallel to the verticalH -axis. Except in the low
temperature range of the antiferromagnetic range, the transitions are indicated by very subtle
anomalies and, to achieve a better accuracy in their determination, the temperature or field
derivatives of the magnetization have been used.

4.1. Magnetic phase diagram along the [100] axis

Entering the quadrupolar phase when decreasing the temperature is marked by a change of
slope of the isofield magnetization (figure 7). The change in sign of the curvature observed
immediately belowTQ between 0.05 and 0.2 T variations is likely due to a more efficient hold
of the magnetic field on orthorhombic domains in 0.2 T than in 0.05 T: the increase of the
magnetic moment occurs when the majority of the domains have their orthorhombic [100]
axis of easy magnetization along the field. As usually, the Néel temperature is marked by a
maximum of the isofield magnetization; the temperature dependence of this latter depends on
the field value, which reveals the existence of several magnetic phases.

As a function of the field, the isothermal magnetization exhibits two well marked anomalies
around 2.5 and 10 kOe for temperatures lower than 2 K; however the high-field transition is
broad and the field derivative reveals it to be multiple, triple at 1.6 K (figure 8 upper part).
This behaviour exists down to 0.1 K. Broad anomalies, as encountered at 2.0 K, may also
correspond to field scans more or less parallel to a vertical transition line in the (H, T ) phase
diagram. Between about 2.0 K andTN , the magnetization curves are quite complex as, for
instance, the isothermal curves at 2.3 and 2.5 K.

The results of the two types of measurement are reported in figure 9. A good agreement is
observed between them and a complex phase diagram is then deduced; the spontaneous phase
occurring atTN , called phase I in the following, is observed to be stable down to 0.1 K. Close
to TN , in fields larger than 4.2 kOe it is replaced by a triangle-shaped phase, phase II. At low
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Figure 7. Temperature variation of the isofield magnetic moment measured along the [100] axis
for the magnetic fields indicated. Data are collected in decreasing temperature; the values collected
in 0.05 T are multiplied by a factor of four.

Figure 8. Field dependence of the magnetic moment and its field derivative measured in increasing
field parallel to the [100] direction for the temperatures indicated; curves are shifted upwards by
the values indicated for each temperature.

temperature and in magnetic fields higher than 2.5 kOe, it vanishes in favour of phase III,
characterized by a ferromagnetic component; this latter has a 1.6 µB component along the
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Figure 9. Magnetic phase diagram along the [100] direction (open squares: from temperature
variations of the magnetization in constant magnetic fields; black dots: from field variations at
constant temperatures).

field direction. Phase III does not spread out up to the paramagnetic phase, being separated
from it by phase IV. This latter, very narrow in temperature, then in magnetic field, seems to
persist down to 0.1 K. At low temperature, it appears to be separated from phase III by phase V,
very narrow in field and not easily defined between them (see the field derivative at 1.6 K in
figure 8).

The transition line between antiferromagnetism and polarized paramagnetism looks as
usual in an antiferromagnet and the small low-temperature coordinate, 11 kOe, agrees with the
weakness of the antiferromagnetic interactions characterized byTN = 3.1 K; its shape is a little
bit less round as usually around the border of phase II. At low temperature, when the anisotropy
is fully active, the sequence of the different phases may be qualitatively understood as a kind
of devil’s staircase from the pure antiferromagnetism towards the polarized paramagnetism.
The line between phases I and III may result from the different behaviours under field of
the magnetic moments system and the quadrupoles one. Spontaneously in an orthorhombic
domain, the magnetic moments are frozen along the [100] easy magnetization axis determined
by the quadrupoles (the anisotropy between the [100] easy magnetization and [010] hard
magnetization axes was observed to be very large in isomorphous TmAg2). In a small
external field, they align themselves perpendicular to the applied field as in any collinear
antiferromagnet; thus the quadrupolar axis is also perpendicular to the field, which tends to
destroy the quadrupolar ordering and this geometry is quite unfavourable to the minimization
of the quadrupolar energy, larger than the bilinear one. In large fields, here larger than 2.5 kOe,
this situation becomes unstable and the full system rotates to an Ising-like configuration with the
external field parallel to the [100] easy magnetization axis, a fraction of the magnetic moments
being reversed in order to give rise to the ferromagnetic component. The positive slope of the
phase I–III line in the (H, T ) plane results then from the complex balance of the magnetic and
quadrupolar energies according to the temperature. In order to be confirmed, this qualitative
analysis obviously requires, first, a complete determination of the structure associated with
each of the different phases by means of neutron diffraction, second, a quantitative analysis
by numerical calculations considering the various couplings as done for the complex magnetic
properties of cubic NdZn, also ruled by quadrupolar and magnetic interactions (Amara and
Morin 1996).
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4.2. Magnetic phase diagram along the [001] and [110] axes

Similar procedures were used for magnetic fields parallel to the [001] axis (figure 10 upper
part). Only the transitions corresponding to the quadrupolar and antiferromagnetic orderings
are observed in the two magnetization behaviours. Isofield variations give clear indications
specially in low fields for almost vertical transition lines and isothermal processes do the
same for nearly horizontal transition lines. The magnetic phase diagram is then quite simple
and easy to understand at least qualitatively: quadrupoles and magnetic moments point
perpendicular to the external field, which has to break both arrangements. The [001] polarized
paramagnetic state is achieved when the〈O2

2〉 quadrupolar component vanishes. As long as
it persists, it delays the rotation of the magnetic moments towards the field and allows the
antiferromagnetism to exist in higher fields than expected from its weak energy and the only
CEF anisotropy. This requires magnetic fields as large as 6 T at 0.1 K.

Figure 10. Upper left part: isofield magnetization variations as functions of the temperature;
the magnetization values in 0.5 T are multiplied by a factor of 5.5; right part: field derivative of
the isothermal magnetization; the 2 and 5 K curves are shifted upwards by 0.3 and 0.1 µB T−1,
respectively. Lower part: the magnetic and quadrupolar phase diagram deduced for a [001] direction
of the applied magnetic field (open squares: from temperature variations of the magnetization in
constant magnetic fields; black dots: from field variations at constant temperatures).

Along the [110] axis, no anomaly is observed concerning the quadrupolar ordering; this
agrees with symmetry considerations; indeed in the tetragonal phase, a [110] magnetic field can
only induce a〈Pxy〉 quadrupolar component associated with the correspondingδ symmetry.
In the orthorhombic phase no clear anomaly may be associated with any modification of
the quadrupolar structure. At lower temperatures, in the magnetic range, the magnetization
processes are reminiscent of the ones observed along the [100] one (figure 11). The resulting
phase diagram consists of the same magnetic phases as along the [100] axis, the critical field
values being larger, in a ratio not too far from the cosine of the angle between the two directions.
Owing to the profile of the field derivative of the isothermal magnetization around 14 kOe, it
appears that phase V does not exist.
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Figure 11. Upper left part: isofield magnetization variations as functions of the temperature;
right part: field derivative of the isothermal magnetization; the 2.1 K curve is shifted upwards
by 5 µB T−1. Lower part: the magnetic phase diagram deduced for a [110] direction of the
applied magnetic field (open squares: from temperature variations of the magnetization in constant
magnetic fields; black dots: from field variations at constant temperatures).

5. Conclusion

Following the initial study of Kosakaet al(1998), we have determined in a first step the strength
of the quadrupolar couplings in TmAu2. This compound exhibits properties very reminiscent
of the ones observed in isomorphous TmAg2. Their description using the CEF level scheme
proposed by Kosakaet al is quite satisfactory in the basal plane although reduced discrepancies
may exist for properties observed along the tetragonal axis. In particular, theγ quadrupolar
coefficients are coherently determined from the analysis of the elastic constant, parastriction
and third-order magnetic susceptibility measurements. We may note the existence of some
antiferromagnetic short range effects below about 15–20 K. The elastic constants,Cγ and
Cδ, measured by Kosakaet al appear harder by a factor of about 4/3 than in TmAg2. Since
the γ parastriction is of the same order of magnitude in both compounds, this leads to an
absolute value of the magnetoelastic coefficient,Bγ , increased by the same ratio in TmAu2.
The main consequence is that the balance between theKγ pair contribution and theGγ

ME

magnetoelastic one is modified, this latter term becoming dominant; TmAu2 appears then
to be the first rare-earth intermetallic to undergo a quadrupolar transition governed by the
magnetoelastic coupling and not by the pair interactions. It is important to check the starting
point of this analysis, i.e. the increased hardness of the RAu2.

The main interest of TmAu2 is the coexistence of quadrupolar interactions with
antiferromagnetic ones, large enough to induce an antiferromagnetic ordering in the
quadrupolar phase. This coexistence leads to magnetic phase diagrams obviously more
complex than in the case of ferromagnetic and ferroquadrupolar orderings belonging to the
same tetragonal symmetry as in cubic TmZn. The complexity mainly originates from the
conflict between quadrupoles which look for an alignment parallel to the external field and
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antiferromagnetic moments which lie along the quadrupolar axis, but prefer to be perpendicular
to the field. The remaining problems are to determine the different structures present according
to the temperature and field values, which is under way, and to quantitatively explain the
magnetic properties using the different couplings here determined.
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